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Summary
It is suggested that the drag coefficient of spheres for Reynolds numbers

up to 10° and a wide range of porosities is given approximately by

c = 8—2'7(CDS(eRe) + eRe(1-¢) (56-2.2)/(100 + eRe))

where CDS is the drag coefficient of an isolated sphere.
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Introduction

Empirical relationships for the drag of spheres in the proximity of other
spheres are avallable from fluid bed data [1]. These relationships have
been developed for Reynolds numbers up to 10° and give large errors if
used at higher Reynolds numbers. For applications such as the interior
ballistics of guns, the drag at Reynolds numbers of up to 10° is needed.
Here we attempt to extend the drag expressions to these higher Reynolds
numbers.

Although the report is confined to spherical particles, for fluid beds and
other applications, the particles of interest may not be spherical. The
drag of non-spherical particles is usually related to the spherical
particle drag by defining an "equivalent" spherical particle. For
Reynolds numbers up to 103 it is suggested [1] that equivalent sphere
should have the same surface area. Such an equivalence could form the
basis of drag estimation of non-spherical particles up to Reynolds numbers
of 105, but its limitations would need investigation. Even without this
"equivalence"” uncertainty, it must be appreciated that the extension of
the drag to higher Reynolds numbers based on the limited information
available necessarily leaves some uncertainty in the accuracy of the
expresslion for the sphere drag. However, for some applications the
accuracy of the drag estimate is not critical and any reasonable estimate
will suffice. For example, in intefnal ballistic calculations, the drag
on the particles only affects the position of the energy input to the flow
and not its amount. Thus some error in the drag can be accommodated

without significant loss of accuracy in the solution.

2. Extension of the sphere drag expression to Re = ;gs

The correlations which are available [1] for the drag of interacting
spheres up to a Reynolds number of 103, can give large errors if applied
at higher Reynolds numbers. To obtain the drag at higher Reynolds numbers
the expressions need to be modified so that they match the available data.
That 1s, they should match the drag of isolated spheres when the porosity
is unity, approximate to the fixed bed results when the porosity is about
0.4 and smoothly blend to the fluld bed data when the Reynolds number is

less than 103. The lack of data at Reynolds numbers of 105 for
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intermediate porosities will still leave uncertainty in the drag estimate

near these values however.

For an isoclated spherical particle at low Mach numbers, accurate
expressions for the drag are available over the whole Reynolds number
range [2]. The drag coefficient is expressed as a piecewise fit to the
data using coefficients w and CR, where these are given by loguﬁe and
CDRe/24-1 respectively. That is

log, C = -2.1072 + o Re<0.01 (1)
= -0.8810 + 0.8200w - 0.0500w> 0.01<Re=20
= -0.7133 + 0.6305w 20<Re=260

log ' C = 1.6435 - 1.12420 + 0.15580° 260<Re=1500
= -2.4571 + 2.5558w - 0.9295w° + 0.1049° 1500<Re=1.2 x 10*
= -1.9181 + 0.6370w - 0.0636w> 1.2 x 10*<Re=4.4 x 10*
= -4.3390 + 1.5809w - 0.1546w> 4.4 x 10*<Re=3.38 x 10°

C, =29.78 - 5.30 3.38 x 10°<Re=4.03 x 10°

= -0.49 + 0.1w 4.03 x 10°<Re=10°
= 0.19 - 8 x 10°/Re 10%<Re

The drag of isolated spheres from these expressions is shown in
fig.1. Although the curve shown is for small Mach numbers, the variation
in the drag for Mach numbers up to 0.5 is very small [3] and can be
neglected. At larger Mach numbers an appropriate correction can be
applied [3], but only the low Mach number expression of equations (1) is

used here.

The correlation of Wen and Yu [1] using fluid bed data, is not based
on equation (1), but on the drag expression of Schiller and Naumann [4].
This is also plotted in fig.1 and can be seen to be close to equation (1)
for Reynolds numbers up to 103. The Wen and Yu correlation can be written

as

»

C =¢&*7(2a/N_ + 3.6/N_ >33 (2)
D Re Re

*
where CD and NRe are the drag coefficlent and Reynolds number based on

the "“superficial” velocity, that is on e(ug-up). where u,g is the gas
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velocity and up the particle velocity. When CD and Re are made

independent of the porosity, equation (2) becomes

C = e%7(24/(eRe) + 3.6/(cRe)® 3*3) (3)

The correlation between equation (2) or (3) and the data accumulated
by Wen and Yu is shown in fig.2, taken from their paper [1]. The log
scaling is such that a tenth of a vertical square represents and 25%
change in the drag coefficient, suggesting a rapidly increasing error
above Reynolds numbers of 10°. Wen and Yu comment on the error at
Reynolds numbers of 103, and suggest that using a more accurate estimate
of the isolated sphere drag (i.e. when e=1) should reduce the error near
these Reynolds numbers. Substituting the drag from equation (1) (with Re
interpreted as €Re) in place of the bracketed expression in equation (3)
does indeed reduce the error as is shown by the broken line in fig.2, but

there is a clear indication that the drag needs to be even larger.

We now consider the fixed bed results. For a fixed bed of
particles, the data and predictions are expressed as a pressure drop
across a given length of bed. To use this data for our purposes, it is
necessary to convert thils pressure drop to a drag coefficient per
spherical particle. The number of particles in a bed of length L and

cross section area A is given from geometrical considerations by

L = 6LA (-g) (2)

3
P nd
P

The loss of momentum across these particles is given by

nD = Afp + Adpu® (5)

For small Mach numbers Apu2 may be neglected compared with Ap, so that

Cc = _Iz)_ = _____P A_p ( 6 )

2 p 3puz(1—e)



There have been a variety of correlations of fixed bed data for
various Reynolds numbers and porosities. These are reviewed in
references 5 and 6. The most established expression is that of Ergun [7]
which is valid up to a Reynolds number of 2300 (1-e). The correlation of
Kuo and Nydegger [5] attempts to extend the Reynolds number to
23,500(1-¢), but it is based on data from beds with mixed particle shapes
and sizes, making it difficult to know how fo interpret the results. The
more recent work of Jones and Krier [6] is more applicable and extends the

fixed bed results to Reynolds numbers up to 105.

These correlations can be written in the form [5]

2
ﬁ_p = E[ﬁ] F (7)
2 [ >4 f
d
P
pu2 1-¢ 2
= dFe Re[T] Fe (8)

Where Ff is given by Ergun as
Fr = 150 + 1.75€¢Re/(1-¢) 0.4sg=0.65 (9)

by Kuo and Nydegger as

0.87

Ff = 276.23 + 5.05(eRe/(1-¢)) €~0.38 (10)
and by Jones and Krier as
F, = 150 + 3.89(cRe/(1+e))"" 0.38<e=0. 44 (11)
Using equation (6) we can write
CD = §%§E[155 ]Ff (12)

giving Ergun’s relation for a sphere for example as
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Using equation (6) we can write

_ 4 1-g
CD - 3£Re[ € ]Fr (12)

giving Ergun’s relation for a sphere for example as

(1-€) 24 _ 0.28
= 25
C 25 3¢ [eRe Y 1% ] (13)
These correlations are plotted in fig.3 for € = 0.4. This value of € is
outside the range for which the Kuo and Nydegger correlation was derived
(l.e. € from 0.376 to 0.390) but the higher drag for Reynolds numbers

below 10° and the lower drag above 104 which they found is clearly
illustrated.

Of greater interest is the extension of Ergun’s correlation up to
Reynolds numbers of 10° by Jones and Krier [6]. As shown in Fig.3, Jones
and Krier predict a smaller drag at € = 0.4 than would be obtained by

using Ergun’s correlation extended up to 105.

This extended Ergun correlation is compared with Wen and Yu's
estimate [1] of the drag from fluid bed data in Fig.4. We see that at low
porosity (¢ = 0.4) Wen and Yu’s estimate is too large for Reynolds numbers

less than 10° and too small for larger Reynolds numbers.

Also shown (by the broken line) on fig.4 is the modified Wen and Yu

correlation, which can be expressed as

_ o =2.7
CD =g CDS(eRe) (14)

where CDS is the isolated sphere drag given by equations (1). It can be
seen that equation (14) gives a drag which is too high except for Reynolds

numbers about 10° or very small Reynolds numbers.




At a slightly larger porosity of 0.44 (which is the largest value of
€ for which the Jones and Krier correlation is valid), we see from Fig.5,
that the agreement between the modified Wen and Yu and extended Ergun is
improved, with large differences only occurring near Reynolds numbers of

10°.

In figs. 5 and 6 the modified Wen and Yu correlation is compared
with Ergun’s correlation for porosities of 0.5 and 0.6. We see that as
the porosity increases, the difference between the correlations gets
rapidly larger for Reynolds numbers above about 102. Thus figs.5 and 6
(and also to some extent fig.2), suggest that better agreement could be
obtained by adding a term which increased the drag in the intermediate
porosity range for Reynolds numbers above 10%. We suggest the addition of
a term of the form k(e-0.44)(1-c)eRe/(100+Re) to Cbs in equation (14),
which is zero when € = 0.44 or € = 1 and is small when eRe is less than
100. With the value of k put equal to 5, it is shown in fig.5 and 6, that
the discrepancy with Ergun’s correlation can be reduced for intermediate

values of the porosity. Thus an expression of the form

C, = €7 (C (eRe) + eRe(1-¢)(5e-2.2)/(100 + eRe)) 0 < Re < 10° (15)
reduces to the isolated sphere drag coefficient when € = 1, is close to
Ergun’s correlation for 0.4 = ¢ = 0.6 and reduces to Wen and Yu's

correlation for small Reynolds numbers.

In Appendix 1 the inclusion of buoyancy drag when using equation (15) is
discussed. In Appendix 2 Fortran Functions for the drag coefficients

gi?en by equations (1) and (15) are given.




CONCLUSIONS

A drag expression is suggested for spheres which have porosities or
void fractions of from 0.4 to 1, which is applicable for Reynolds numbers
of up to 105. The expression matches reliable data correlations for the
drop of lsolated spheres, the drag of spheres in packed beds and the drag
of spheres at Reynolds numbers less than 103. However the lack of data at
Intermediate porosities and Reynolds numbers of about 105 means that the
estimate is not reliable in this region. There is a need for more data to
improve the accuracy, but the estimate can be used for applications where

great accuracy is not required.
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Fig.1: Drag coefficient of a sphere for a range.of Reynolds .
numbers.
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Fig.2: Generalized correlation for the bed expansion of spheres in a

particulate fluidization (after Wen and Yu).
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Fig.3: Drag coefficient of spheres from fixed bed data at a
porosity of 0.4.
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Fig.4 Comparison between fixed and fluid bed sphere drag correlations
at a porosity of 0.4.
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Fig.5 Comparison between fixed and fluid bed sphere drag correlations
at a porosity of 0.44.
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Fig.6 Drag coefficient of spheres at a porosity of 0.5.
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Fig.7 Drag coefficient of spheres at a porosity of 0.6.




APPENDIX 1
Application of drag expressions to tube calculations.

The drag of the particles in the flow includes the aerodynamic drag
and the buoyancy. The former of these can be estimated using appropriate
expressions, such as the drag expression developed here, where the
velocity of the particles used to determine the Reynolds number is the
relative velocity of the particles to the flow. The buoyancy drag depends
on the particle volume and the pressure gradient. It should be noted that
the aerodynamic drag of the particles will result in a pressure gradient
and this should not be included in the buoyancy drag calculation. Thus
the buoyancy drag is given by

dp _ dp
Particle Volume x [3§ ax (aerodynamic drag)]

The pressure gradient due to the aerodynamic drag can be obtained from

a simple momentum balance as in equations (4) to (6).
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— APPENCIX ¢

DRAG COEFFICIENT OF SPHERE GIVEN VOID FRACTION AND RE<10%*5
VOIL FRACTICN OF POROSITY IS THE VOLUMS FRACTION QOF THE GAS SPACE
REYNOLDS NUMBER RE=CENSITY GAS=SPHERE DIAM*RELATIVE VEL/VISCOSITY GAS
ISOLATED SPHERE (VOID=1) VALID ALL RE (FORTRAN FUNCTION COS(RE))
MULTIPLE SPFERE (VOID<1) VALID RE<1C0,ICO (J«PIKE,CRANFIELD RPT 9012)
FUNCTION COSPHERZ(VCID,RE)
IF(VOID LT (99 ANDRE.CT.1ESIWRITI(S,*) “INVALIC CDSPHEREZ,RE=",RE
COSPHERE=VOID*»(=2,.7)*x (COS{(RE)+VOIO#RE*(1.0-VOIL)#«(5.0+V0ID=-2.2)/
+(10C.0+VOID®RE))
END

OO0

C DRAG COtEFF CF SFHERE ANY REZYNOLDS NUMBZIR
CLIFFsR GRACEsJeR WE3BER,M.E,BUBBLES,OROPS & PARTICLES,ACADEMIC PRESS 78
C NB NEGATIVE VALLES OF RE (FROM NEG VEL) GIVE NEGATIVE CD!
- FUNCTIOMN CDS{RZ)
" R=ABS(RE)
C=0a0
IF(R.EQ.0.0)G0TC 1
W=LCGT10(R)
IF(R.GTe0a01 <ANDWReLE220.0 ) C==C.8310+0,.3200*W=0.05C0nurW
IF(R.GTL2040 oANDeRaLEL260.0 ) C==C.712340.6305*W
IF(R.GTL260.0 «ANDR.LEL150C.0) C= 1.64625-1,1242%W+0.15530uni
IF(ReGT.a14a5E3 eANLCoRaLELT142E4 ) C==2.457142.5558*W=0.9295xunU+
+0.1C4F *hxl*h
IF(ReGToa1e2E4 oANC.RaLEebedESL ) C==1.918140,5370»*w~0.0630%WnNW
IF(RaGTabda4Es oANCoRalTa3.3855) C==443390+1,5309%xW=0.1546%W2W
IF(ReGTa3a3EE5eANDaRalLEe4.0355) C=25.73C0=5.3000~W
IFCRaGTe%e03E5eANDReLELT1.0ES ) C==Co49C0+0.1000#W
IF{R.GT«1a0JED) C= C.19C0-8E4/R

IF(R.LTL343E25)C=102xC

IF(R.LT.200 3C=24/Rx(1+0)
1 CO0S=CxSIGN(1.0,R2)

eND




